Camelliols A-C, Three Novel Incompletely Cyclized Triterpene Alcohols from Sasanqua Oil (Camellia sasanqua)

Toshihiro Akihisa,*,† K oichi Arai, ${ }^{\ddagger}$ Yumiko Kimura, ${ }^{\S}$ Kazuo K oike, ${ }^{\perp}$ Wilhelmus C. M. C. Kokke, ${ }^{\|}$ Tsuyoshi Shibata, ${ }^{\dagger}$ and Tamotsu Nikaido ${ }^{\perp}$

College of Science and Technol ogy, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, J apan, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-shi, Saitama 350-0283, J apan, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, J apan, School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, J apan, and Cauldron Process Chemistry, 383 Phoenixville Pike, Malvern, Pennsylvania 19355

Received J uly 31, 1998
Three novel triterpene alcohols, camelliols A (1), B (3), and C (5), possessing a mono-, bi-, and tricyclic ring system, respectively, have been isolated, al ong with achilleol A, a known monocydic triterpene al cohol, from the nonsaponifiablelipids of sasanqua oil (Camelia sasanqua). The structures of these new al cohols were determined on the basis of spectroscopic methods.

The seed oil of Camellia sasanqua Thunb. (Theaceae) (sasanqua oil) has a composition similar to camellia oil (from C. japonica L.) ${ }^{1}$ and is occasionally used as a substitute for camellia oil. ${ }^{2}$ These oils contain β-amyrin (ol ean-12-en-3 β-ol), butyrospermol (eupha-7,24-dien-3 β-ol), and Δ^{7}-tirucallol (tirucalla-7,24-dien-3 β-ol) as the major triterpene al cohols from the nonsaponifiable lipid fraction. ${ }^{3,4}$ Earlier investigations on the triterpene alcohol fractions of the nonsaponifiable lipid fraction of camellia and sasanqua oils have led to the isolation and characterization of eight novel compounds along with 21 known compounds.5,6 In this paper, we report the isolation and structure elucidation as the acetyl derivatives of three novel incompletely cydized triterpene al cohols from sasanqua oil. They were given the trivial names camelliol A (1), B (3), and C (5).

$3 R=H \quad 4 R=A C$

Results and Discussion

The molecular formula of compound $\mathbf{2}$ was established as $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}$ (HREIMS). It was shown to have a secondary

[^0]
2

4

6

Figure 1. Mass spectral fragments (m / z) of 2, 4, and 6.
acetoxyl group [$\nu_{\text {max }} 1240,1740 \mathrm{~cm}^{-1} ; \delta_{c} 76.7$ (CH); $\delta_{H} 2.04$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$], two trisubstituted double bonds $\left[\nu_{\text {max }} 835\right.$, $800 \mathrm{~cm}^{-1} ; \delta_{\mathrm{C}} 117.6(\mathrm{CH})$ and $124.9(\mathrm{CH})$; $\delta_{\mathrm{H}} 5.17$ (1H, br t, $\mathrm{J}=6.4 \mathrm{~Hz}$) and $5.22(1 \mathrm{H}, \mathrm{m})$], and one tetrasubstituted double bond (four quaternary sp^{2} carbon signals with δ_{C} 123.9, 133.5, 135.0, and 137.0, two of which are associated with the trisubstituted double bonds), and five tertiary [δ_{H}

Table 1. ${ }^{13} \mathrm{C}$ NMR Spectral Data (δ Values; 100.6 MHz; CDCl_{3}) of Three Novel Triterpene Alcohols and Their Acetyl Derivatives from Sasanqua Oil

carbon	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}^{\mathrm{a}}$	$\mathbf{6}^{\mathrm{a}}$
1	118.3	117.6	31.6	31.7	118.3	117.6
2	31.8	28.7	31.2	27.0	31.8	28.8
3	75.1	76.7	63.4	64.9	75.1	76.7
4	38.1	36.8	125.2	125.5	38.1	36.8
5	48.9	48.9	135.1	135.3	49.0	48.9
6	27.1	27.1	26.8	26.8	27.2	27.4
7	42.0	41.8	40.3	40.2	42.0	41.8
8	135.1	135.0	135.6	135.6	135.2	135.2
9	124.9	124.9	124.1	124.1	$124.7^{\text {b }}$	$124.7^{\text {b }}$
10	137.1	137.0	35.6	35.5	137.1	137.0
11	27.2	27.2	27.1	27.1	28.3	28.3
12	31.6	31.6	31.5	31.6	28.3	28.3
13	133.9	133.5	133.6	133.6	124.3^{b}	124.3^{b}
14	123.9	123.9	123.8	123.9	134.9	134.9^{c}
15	29.5	29.5	29.5	29.5	39.8	39.8
16	26.5	26.5	26.5	26.5	26.7	26.7
17	31.4	31.4	31.4	31.4	$124.3^{\text {b }}$	$124.3^{\text {b }}$
18	42.3	42.2	42.2	42.2	135.4^{c}	$135 . .^{c}$
19	43.0	43.0	42.9	42.9	39.8	39.8
20	31.0	31.0	31.0	31.0	26.8	26.8
21	34.6	34.6	34.6	34.6	124.4	124.4
22	36.6	36.6	36.5	36.6	131.3	131.3
23	25.3	25.5	20.1	20.1	25.4	25.6
24	16.1	18.0	20.9	21.0	16.2	18.2
25	22.6	22.7	19.6	19.6	22.6	22.7
26	16.0	16.0	16.0	16.0	16.0	16.0
27	18.7	18.7	18.7	18.7	16.1	16.1
28	27.0	27.0	27.0	27.0	16.1	16.1
29	33.2	33.2	33.2	33.2	17.7	17.7
30	24.2	24.2	24.2	24.2	25.7	25.7
OCOMe		21.3		21.0		21.3
OCOMe		170.8		171.2		170.8

${ }^{\text {a }}$ Determined at 125 MHz . ${ }^{\text {b,c Assignments in each column are }}$ interchangeable.
$0.82,0.87,0.89(6 \mathrm{H})$, and 0.92 (each s)] and three olefinic [$\delta_{H} 1.58,1.63$, and 1.72 (each s)] methyl groups. These data, in combination with EIMS fragment ions at $\mathrm{m} / \mathrm{z} 121$ [$\left.\mathrm{C}_{9} \mathrm{H}_{13}\right]^{+}$(ring A - HOAc) and $191\left[\mathrm{C}_{14} \mathrm{H}_{23}\right]^{+}$(rings D and E), along with the other prominent ions ($\mathrm{m} / \mathrm{z} 274,259,218$, 205, and 135) shown in Figure 1, suggested that compound

2 was a triterpene with both a monocyclic (ring A) and a bicyclic (rings D/E) ring system. The secondary acetoxyl group, located most likely at C-3 of ring A, was deduced to be oriented equatorially from the shift and coupling constants of the adjacent methine ${ }^{1} \mathrm{H}$ signal [$\delta_{\mathrm{H}} 4.71$ (1H, dd, J $=5.9,7.3 \mathrm{~Hz})$. ${ }^{4}$ The close similarity of the ${ }^{13} \mathrm{C}$ NMR (Table 1), ${ }^{1}$ H NMR (Table 2), and EIMS data (see Experimental Section) with those of achilleol B^{7} suggested that 2 had a skeleton similar to that of achilleol B. Analysis of the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC spectra reveal ed the structure of 2 to be 8,14; 9,10-bis-seco-ol eana-1(10),8,13-trien-3 β-yl acetate with a yet-to-be-determined stereochemistry. The stereochemistry of $\mathbf{2}$ was determined by NOE difference spectroscopy. Compound 2 showed significant NOE correlations between [H-2 $\alpha-\mathrm{H}-3 \alpha-\mathrm{H}-23$ ($4 \alpha-\mathrm{Me}$) $-\mathrm{H}-5 \alpha$] and $[\mathrm{H}-3 \alpha-\mathrm{H}-5 \alpha]$ on the α-face and $[\mathrm{H}-2 \beta-$ $\mathrm{H}-24(4 \beta-\mathrm{Me})]$ on the β-face of ring A of the molecule (Figure 2). This allowed the assignment of H-23 and H-24 signals and demonstrated the acetoxyl group at C-3 to be oriented at the β-face and the methine at C-5 at the α-face. Other significant NOE correlations observed between [H-28 $(17 \beta-\mathrm{Me})-\mathrm{H}-18 \beta$ and $\mathrm{H}-22 \beta-\mathrm{H}-30(20 \beta-\mathrm{Me})]$ on the β-face and $[\mathrm{H}-19 \alpha-\mathrm{H}-29(20 \alpha-\mathrm{Me})]$ on the α-face of rings D and E were consistent with those observed for β-amyrin acetate (Figure 2). ${ }^{8}$ This suggested that $\mathbf{2}$ had a cis configuration in terms of the D/E-ring junction, orienting H-28 at the β-face. We conclude that structure $\mathbf{2}$ is 8,$14 ; 9,10$-bis-secool eana-1(10),8,13-trien-3 β-yl acetate (camelliol A acetate). On alkaline hydrolysis, acetate 2 yielded a free alcohol, 8,14;9,10-bis-seco-ol eana-1(10),8,13-trien-3 β-ol (camelliol A, 1). ${ }^{10}$

Compound 4 had the molecular formula $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{2}$ (HREIMS) and IR absorptions at 1238, 1740 (acetoxyl), 800, and $824 \mathrm{~cm}^{-1}$ (trisubstituted double bond). The mass spectrum included diagnostic fragment ions at $\mathrm{m} / \mathrm{z} 259,218,205$, and 191 (Figure 1). The ${ }^{1} \mathrm{H}$ NMR spectrum included three tertiary ($\delta 0.83,0.88$, and 0.90) and two ol efinic ($\delta 1.58$ and 1.64) methyl singlets and an olefinic methine ($\delta 5.17$, br t, $\mathrm{J}=6.6 \mathrm{~Hz}$) signal. These spectral features are similar to

Table 2. ${ }^{1} \mathrm{H}$ NMR Spectral Data (δ Values; $400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) of Compounds $\mathbf{1}-\mathbf{6}^{\mathrm{a}}$

proton(s)	1	2	3	4	$5{ }^{\text {b }}$	$6{ }^{\text {b }}$
1	5.24	5.22	1.36 (2H)	1.35 (2H)	5.24	5.21
2	2.24 (α), 1.98 (β)	2.28 (α), 2.00 (β)	1.48 (2H)	1.53 (2H)	2.24 (α), 1.97 (β)	2.27 (α), 2.04 (β)
3	3.47 (dd, 5.6, 8.0)	4.71 (dd, 5.9, 7.3)	3.61 (2H, t, 6.6)	4.02 (2H, dt, 1.9, 6.6)	3.46 (br t, 6.9)	4.70 (dd, 5.8, 7.0)
5	1.66	1.70			1.65	1.69
6	1.36, 1.76	1.35, 1.75	$1.98(2 \mathrm{H})^{\text {c }}$	$1.98(2 \mathrm{H})^{\text {c }}$	1.35, 1.76	1.37, 1.74
7	1.97, 2.16	1.96, 2.16	$1.97(2 \mathrm{H})^{\text {c }}$	$1.97(2 \mathrm{H})^{\text {c }}$	1.96, 2.16	1.98, 2.15
9	5.17 (br t, 6.4)	5.17 (br t, 7.3)	5.17 (br t, 6.6)	5.17 (br t, 6.6)	5.15	5.15
10			2.70 (dq, 7.3, 7.0)	2.70 (dq, 7.3, 7.0)		
11	1.96, 2.04	1.97, 2.05	1.95, 2.04	1.95, 2.03	2.02 (2H)	2.02 (2H)
12	1.74, 2.22	1.74, 2.23	1.74, 2.24	1.73, 2.24	2.02 (2H)	2.02 (2H)
13					5.15	5.15
15	1.89 (α), 2.02 (β)	1.89 (α), 2.03 (β)	1.90 (α), 2.03 (β)	1.90 (α), $2.02(\beta)$	1.98 (2H)	1.97 (2H)
16	1.91 (α), 0.81 (β)	1.91 (α), 0.81 (β)	1.91 (α), 0.81 (β)	1.92 (α), 0.81 (β)	2.07 (2H)	2.07 (2H)
17					5.12	5.12
18	1.66	1.66	1.65	1.66		
19	1.38 (α), 0.98 (β)	1.38 (α), 0.96 (β)	1.39 (α), 0.96 (β)	1.39 (α), 0.96 (β)	1.98 (2H)	1.97 (2H)
20					2.07 (2H)	2.07 (2H)
21		1.33 (α), 1.12 (β)	1.34 (α), 1.11 (β)	1.34 (α), 1.11 (β)	5.10	5.10
22	1.22 (α), 1.48 (β)	1.22 (α), 1.48 (β)	1.22 (α), 1.49 (β)	1.22 (α), 1.48 (β)		
23	0.97 (s)	0.92 (s)	1.66 (s)	1.65 (s)	0.97 (s)	0.91 (s)
24	0.83 (s)	0.89 (s)	1.68 (s)	1.68 (s)	0.83 (s)	0.89 (s)
25	1.72 (br s)	1.72 (br s)	0.97 (d, 7.2)	0.97 (d, 6.9)	1.72 (br s)	1.72 (br s)
26	1.63 (s)	1.63 (s)	1.64 (br s)	1.64 (br s)	1.60 (s)	1.62 (s)
27	1.58 (s)	1.58 (s)	1.58 (s)	1.58 (s)	1.60 (s)	1.60 (s)
28	0.82 (s)	0.82 (s)	0.83 (s)	0.83 (s)	1.60 (s)	1.60 (s)
29	0.87 (s)	0.87 (s)	0.88 (s)	0.88 (s)	1.60 (s)	1.60 (s)
30	0.90 (s)	0.89 (s)	0.90 (s)	0.90 (s)	1.68 (s)	1.68 (s)
3-0Ac		2.04 (s)		2.04 (s)		2.04 (s)

[^1]
2

4

β-Amyrin acetate

Figure 2. Major NOE correlations (\leftrightarrow) for 2, 4, 6, and β-amyrin acetate.
those of 2. It appeared that $\mathbf{2}$ and $\mathbf{4}$ had the same righthand portion (carbons 7-30) of the molecule. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 included signals corresponding to an isopropylidene [$\delta_{H} 1.65$ and 1.68 (each 3 H and s)], a secondary methyl ($\delta_{\mathrm{H}} 0.97, \mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$) associated with an allylic methine ($\delta_{\mathrm{H}} 2.70, \mathrm{tq}, \mathrm{J}=7.3,7.0 \mathrm{~Hz}$), and an acetoxy methylene ($\delta_{\mathrm{H}} 2.04,3 \mathrm{H}, \mathrm{s}$, and $\delta_{\mathrm{H}} 4.02,2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.9,6.6 \mathrm{~Hz}$), which are consistent with a 3,4-seco-triterpene-3-yl acetate structural moiety. ${ }^{6}$ This was supported by the fragments having $\mathrm{m} / \mathrm{z} 123\left[\mathrm{C}_{9} \mathrm{H}_{15}\right]^{+}$(Figure 1), formed by cleavage of the C-5 and C-6 bond and loss of acetic acid, and m/z 69 $\left[\mathrm{C}_{5} \mathrm{H}_{9}\right]^{+}$, due to the cleavage of the $\mathrm{C}-5$ and $\mathrm{C}-10$ bond with concomitant loss of acetic acid. The above evidence in combination with the ${ }^{13} \mathrm{C}$ (Table 1) and ${ }^{1} \mathrm{H}$ NMR data (Table 2), in addition to analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC , and HMBC spectra, indicated that 4 possessed a 3,4;8,-14;9,10-tris-seco-ol eana-4,8,13-trien-3-yl acetate structure. Compound 4 showed the same significant NOE correlations in terms of ring D/E with those of compound 2 (Figure 2), ${ }^{8}$ and hence, 4 was established as (10弓)-3,4;8,14;9,10-tris-seco-oleana-4,8,13-trien-3-yl acetate (camelliol B acetate), with the stereochemistry at C-10 remaining undetermined. On alkaline hydrolysis, acetate 4 yielded a free alcohol,
(10૬)-3,4;8,14;9,10-tris-seco-oleana-4,8,13-trien-3-ol (camelliol B, 3). ${ }^{10}$

The molecular formula of compound 6 was determined as $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}$ by HREIMS. Its IR spectrum showed absorption bands for an acetoxyl group (1240, $1720 \mathrm{~cm}^{-1}$) and a trisubstituted double bond ($800,835 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 displayed signals dueto a secondary acetoxyl group [$\delta_{\mathrm{H}} 2.04$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$) and $4.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,7.0$ $\mathrm{Hz})$], a trisubstituted double bond [$\delta_{\mathrm{H}} 5.22(1 \mathrm{H}, \mathrm{m})$], and two tertiary methyl groups [$\delta_{\mathrm{H}} 0.89$ and 0.91 (each s)] and an olefinic ($\delta_{\mathrm{H}} 1.72, \mathrm{~s}$) methyl group, which were almost indistinguishable from those arising from the ring A protons of 2 (Table 2). This information, in combination with a diagnostic EIMS fragment ion at m/z $121\left[\mathrm{C}_{9} \mathrm{H}_{13}\right]^{+}$, formed by cleavage of the C-5 and C-6 bond and loss of acetic acid (Figure 1), suggested that compound 6 was a triterpene with the same monocyclic (ring A) moiety in the molecule as compound 2. Further, the ${ }^{1} \mathrm{H}$ NMR signals for five olefinic methyl groups [$\delta_{\mathrm{H}} 1.60(9 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{s})$, and $1.68(3 \mathrm{H}, \mathrm{s})$] and four trisubstituted double bonds $\left[\delta_{\mathrm{H}}\right.$ $5.10-5.15(4 \mathrm{H}, \mathrm{m})$] (Table 2) and the EIMS fragmentation pattern (Figure 1) of 6, arising from four isoprene units contained as a side chain in the molecule, were consistent with those of achilleol A acetate. ${ }^{11}$ The above evidence in combination with the ${ }^{13} \mathrm{C}$ (Table 1) and ${ }^{1} \mathrm{H}$ NMR (Table 2) data in addition to ${ }^{1} \mathrm{H}{ }^{-1} \mathrm{H}$ COSY, HSQC, HMBC, difference NOE, and phase-sensitive NOESY spectra indicated that 6 possesses the structure 8,14;9,10;13,18;17,22-tetra-seco-neogammacera-1(10),8,13,17,21-pentaen-3 β-yl acetate (Figure 2). ${ }^{8}$ Alkaline hydrolysis of 6 yielded camelliol C (5; 8,14;9,10;13,18;17,22-tetra-seco-neogammacera-1(10),8,13,-17,21-pentaen-3 β-ol; $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}$). ${ }^{10}$

Two triterpene alcohols structurally related to compounds 1, 3, and 5 have previously been reported from Achillea odorata L. (Compositae), $, 7,11$ viz., achilleols A and B. We also isolated the first of these two known compounds from sasanqua oil. It is a double-bond isomer of camelliol C (5). Achilleol B differs from camelliol $A(\mathbf{1})$ in that it has an exocyclic double bond in the A ring and a trans configuration of the decalin residue (D / E ring). Sasanqua oil contains β-amyrin (25% of the triterpenes). It is interesting to note that a bicyclic squalene 2,3-oxide, possessing the same ring system (D/E ring) as 1 and 3, afforded β-amyrin on enzymatic cydization. ${ }^{12}$ Thus, $\mathbf{1}$ and $\mathbf{3}$ might be byproducts of the biosynthesis of β-amyrin.

Experimental Section

General Experimental Procedures. TLC plates [silica gel-AgNO $\left.\mathrm{A}_{3}(4: 1, \mathrm{w} / \mathrm{w})\right]$ were developed with cyclohexanesEtOAc (9:1). Reversed-phase HPLC was carried out on octadecyl silica gel col umns ($25 \mathrm{~cm} \times 10 \mathrm{mmi}$.d.), on a Superiorex ODS S-5 μ m column (Shiseido Co., Ltd., Tokyo, J apan) (HPLC I) and on a TSK ODS-120A $5 \mu \mathrm{~m}$ column (Toso Co., Tokyo, J apan) (HPLC II), at $25^{\circ} \mathrm{C}$ with $\mathrm{MeOH}(4 \mathrm{~mL} / \mathrm{min})$ as mobile phase. GLC was performed using a DB-17 fused-silica capillary col umn ($30 \mathrm{~m} \times 0.3 \mathrm{~mm}$ i.d., column temperature $275^{\circ} \mathrm{C}$). F or both HPLC and GLC, cholesterol (cholest-5-en-3 β-ol) was the standard for the determination of $\mathrm{Rt}_{\mathrm{R}}(\mathrm{I})$ of hydroxy triterpenes; chol esteryl acetate was the standard for the determination of $R t_{R}(I I)$ for the acetoxy triterpenes. EIMS and HREIMS were recorded at 70 eV . NMR spectra were recorded, if not otherwise specified, at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ and $100.6 \mathrm{MHz}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3} with tetramethylsilane (TMS) (${ }^{1} \mathrm{H}$ NMR) and CDCl_{3} at $\delta 77.0\left({ }^{13} \mathrm{C}\right.$ NMR) as internal standard. Chemical shifts are δ values. IR spectra were recorded as liquid films. Specific rotations were measured at $25{ }^{\circ} \mathrm{C}$ in CHCl_{3}. Acetylation ($\mathrm{Ac}_{2} \mathrm{O}$-pyridine) and hydrolysis of acetates ($5 \% \mathrm{KOH}$ in MeOH) were performed at room temperature overnight.

Materials. Crude sasanqua oil (Camellia sasanqua Thunb.) was donated by Nikko Fine Products Co. (Tokyo, J apan). A reference specimen of β-amyrin acetate was isolated from sasanqua oil. ${ }^{5}$

Extraction and Isolation. Alkaline hydrolysis ($5 \% \mathrm{KOH}$ in MeOH , reflux, 3 h) of sasanqua oil (5.0 kg) followed by diisopropyl ether extraction yiel ded a neutral nonsaponifiable lipid fraction (19.2 g). Column chromatography over silica gel afforded a triterpene alcohol fraction (6.7 g), which was acetylated. Yield: 5.2 g . Argentation TLC followed by HPLC of the acetylated fraction yielded 29 compounds ${ }^{5,6}$ and, furthermore, four incompl etely cyclized triterpene alcohols as the acetyl derivatives: $\mathbf{2}(5 \mathrm{mg}), \mathbf{4}(5 \mathrm{mg}), \mathbf{6}(8 \mathrm{mg})$, and achilleol A acetate (10 mg).

Camelliol A (1): amorphous gum; $[\alpha]^{25} \mathrm{D}+4.0^{\circ}$ (c 0.2 , CHCl_{3}); IR $\nu_{\text {max }} 3400,800 \mathrm{~cm}^{-1}$; EIMS m/z $426[\mathrm{M}]^{+}$(24), 411 (16), 408 (6), 393 (5), 287 (3), 274 (14), 259 (6), 231 (3), 218 (30), 205 (58), 191 (17), 189 (11), 175 (6), 163 (6), 149 (21), 139 (4), 135 (30), 121 (48), 109 (100); HREIMS m/z 426.3879 (calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}, 426.3859$), 411.3642 (calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}, 411.3624$), 408.3751 (calcd for $\mathrm{C}_{30} \mathrm{H}_{48}, 408.3753$), 274.2639 (calcd for $\mathrm{C}_{20} \mathrm{H}_{34}, 274.2658$), 259.2398 (calcd for $\mathrm{C}_{19} \mathrm{H}_{31}, 259.2424$), 218.2065 (calcd for $\mathrm{C}_{16} \mathrm{H}_{26}, 218.2033$), 205.1916 (calcd for $\mathrm{C}_{15} \mathrm{H}_{25}, 205.1955$), 191.1780 (calcd for $\mathrm{C}_{14} \mathrm{H}_{23}, 191.1797$), 139.1120 (calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}, 139.1122$), 135.1160 (calcd for $\mathrm{C}_{10} \mathrm{H}_{15}, 135.1173$), 121.1009 (calcd for $\mathrm{C}_{9} \mathrm{H}_{13}, 121.1016$); Rt $\mathrm{R}_{\mathrm{R}}(\mathrm{I})$ 0.65 (HPLC I), 0.78 (GLC).

Camelliol A acetate (2): amorphous gum; $[\alpha]^{25} \mathrm{D}-3.1^{\circ}$ (c $0.2, \mathrm{CHCl}_{3}$); IR $\nu_{\max } 1740,1240,835,800 \mathrm{~cm}^{-1}$; EIMS m/z 468 [M] ${ }^{+}$(11), 453 (5), 408 (10), 393 (9), 274 (24), 259 (11), 244 (2), 231 (3), 229 (4), 218 (26), 205 (63), 191 (12), 189 (16), 181 (1), 175 (11), 149 (26), 135 (43), 121 (72), 111 (95), 97 (85), 43 (100); HREIMS m/z (assignment) $468.3942\left(\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}\right), 453.3746$ $\left(\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{2}\right), 408.3712\left(\mathrm{C}_{30} \mathrm{H}_{48}\right)$), $274.2664\left(\mathrm{C}_{20} \mathrm{H}_{34}\right), 259.2404$ $\left(\mathrm{C}_{19} \mathrm{H}_{31}\right), 218.2088\left(\mathrm{C}_{16} \mathrm{H}_{26}\right), 205.1972\left(\mathrm{C}_{15} \mathrm{H}_{25}\right), 191.1784\left(\mathrm{C}_{14} \mathrm{H}_{23}\right)$, $181.1248\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\right), 135.1155\left(\mathrm{C}_{10} \mathrm{H}_{15}\right), 121.0989\left(\mathrm{C}_{9} \mathrm{H}_{13}\right) ; \mathrm{Rt}_{\mathrm{R}}-$ (II) 0.51 (HPLC I), 0.26 (HPLC II), 0.68 (GLC). On alkaline hydrolysis, 2 yielded a free alcohol (1).

Camelliol B (3): amorphous gum; $[\alpha]^{25} \mathrm{D}+1.7^{\circ}$ (c 0.4 , CHCl_{3}); IR $\nu_{\text {max }} 3340,800 \mathrm{~cm}^{-1}$; EIMS m/z 428 [M] ${ }^{+}$(25), 413 (10), 341 (1), 273 (3), 257 (5), 236 (5), 222 (3), 218 (5), 205 (28), 191 (5), 189 (5), 163 (3), 149 (13), 137 (18), 135 (16), 123 (15), 121 (17), 109 (50), 95 (61), 87 (55), 81 (66), 69 (100); HREIMS m / z (assignment) $428.4019\left(\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}\right), 413.3760\left(\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}\right)$, $273.2541\left(\mathrm{C}_{20} \mathrm{H}_{33}\right), 218.2064\left(\mathrm{C}_{16} \mathrm{H}_{26}\right), 205.1900\left(\mathrm{C}_{15} \mathrm{H}_{25}\right), 191.1746$ $\left(\mathrm{C}_{14} \mathrm{H}_{23}\right), 137.1317\left(\mathrm{C}_{10} \mathrm{H}_{17}\right), 123.1171\left(\mathrm{C}_{9} \mathrm{H}_{15}\right), 69.0702\left(\mathrm{C}_{5} \mathrm{H}_{9}\right)$; $\operatorname{Rt}_{R}(1) 0.60$ (HPLC I), 0.60 (GLC).

Camelliol B acetate (4): amorphous gum; $[\alpha]^{25} \mathrm{D}-3.6^{\circ}$ (C $0.1, \mathrm{CHCl}_{3}$); IR $v_{\max } 1740,1238,840,800 \mathrm{~cm}^{-1}$; EIMS m/z 470 [M] (37), 455 (14), 273 (3), 264 (3), 259 (2), 257 (2), 218 (9), 205 (45), 191 (8), 189 (12), 149 (18), 137 (45), 123 (18), 121 (31), 109 (78), 95 (100), 81 (77), 69 (70); HREIMS m/z (assignment) $470.4100\left(\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{2}\right), 455.3848\left(\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{2}\right), 273.2580$ $\left(\mathrm{C}_{20} \mathrm{H}_{33}\right), 259.2364\left(\mathrm{C}_{19} \mathrm{H}_{31}\right), 218.2073\left(\mathrm{C}_{16} \mathrm{H}_{26}\right), 205.1978\left(\mathrm{C}_{15} \mathrm{H}_{25}\right)$,
$191.1812\left(\mathrm{C}_{14} \mathrm{H}_{23}\right), 137.1309\left(\mathrm{C}_{10} \mathrm{H}_{17}\right), 123.1144\left(\mathrm{C}_{9} \mathrm{H}_{15}\right), 69.0700$ $\left(\mathrm{C}_{5} \mathrm{H}_{9}\right) ; \mathrm{Rt}_{\mathrm{R}}(\mathrm{II}) 0.51$ (HPLCI), 0.24 (HPLC II), 0.57 (GLC). On alkaline hydrolysis, 4 yielded a free alcohol (3).

Camelliol C (5): amorphous gum; $[\alpha]^{25} \mathrm{D}-12.9^{\circ}$ (c 0.2 , CHCl_{3}); IR $\nu_{\max } 3393,800 \mathrm{~cm}^{-1}$; EIMS m/z $426[\mathrm{M}]^{+}(2), 408$ (1), 383 (1), 357 (1), 339 (1), 315 (1), 286 (1), 274 (2), 259 (1), 243 (1), 231 (2), 217 (2), 205 (3), 203 (6), 191 (2), 175 (3), 161 (5), 151 (7), 149 (9), 136 (20), 135 (15), 123 (25), 121 (29), 81 (96), 69 (100), 55 (31); HREIMS m/z (assignment) 426.3830 $\left(\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}\right), 408.3753\left(\mathrm{C}_{30} \mathrm{H}_{48}\right), 357.3208\left(\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}\right), 339.3018$ $\left(\mathrm{C}_{25} \mathrm{H}_{39}\right), 274.2630\left(\mathrm{C}_{20} \mathrm{H}_{34}\right), 259.2483\left(\mathrm{C}_{19} \mathrm{H}_{31}\right), 217.1974\left(\mathrm{C}_{16} \mathrm{H}_{25}\right)$, $205.1909\left(\mathrm{C}_{15} \mathrm{H}_{25}\right)$, 191.1779 ($\left.\mathrm{C}_{14} \mathrm{H}_{23}\right), 135.1184\left(\mathrm{C}_{10} \mathrm{H}_{15}\right), 123.1153$ $\left(\mathrm{C}_{9} \mathrm{H}_{15}\right), 121.0991\left(\mathrm{C}_{9} \mathrm{H}_{13}\right), 69.0717\left(\mathrm{C}_{5} \mathrm{H}_{9}\right), 55.0557\left(\mathrm{C}_{4} \mathrm{H}_{7}\right) ; \mathrm{Rt}_{\mathrm{R}}-$ (I) 0.39 (HPLC I), 0.85 (GLC).

Camelliol C acetate (6): amorphous gum; $[\alpha]^{25} \mathrm{D}-6.5^{\circ}$ (C $0.8, \mathrm{CHCl}_{3}$); IR $v_{\max } 1720,1240,835,800 \mathrm{~cm}^{-1} ;$ EIMS m/z 468 [M] ${ }^{+}$(1), 408 (1), 339 (1), 274 (3), 271 (1), 259 (1), 257 (1), 231 (2), 217 (1), 205 (3), 203 (5), 191 (2), 175 (2), 149 (9), 147 (1), 135 (20), 134 (37), 123 (20), 121 (27), 81 (74), 69 (100), 55 (19); HREIMS m/z (assignment) $468.3968\left(\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}\right), 408.3734$ $\left(\mathrm{C}_{30} \mathrm{H}_{48}\right), 339.3064\left(\mathrm{C}_{25} \mathrm{H}_{39}\right), 274.2678\left(\mathrm{C}_{20} \mathrm{H}_{34}\right), 259.2407\left(\mathrm{C}_{19} \mathrm{H}_{31}\right)$, $217.1949\left(\mathrm{C}_{16} \mathrm{H}_{25}\right), 205.1942\left(\mathrm{C}_{15} \mathrm{H}_{25}\right)$, $191.1781\left(\mathrm{C}_{14} \mathrm{H}_{23}\right), 135.1165$ $\left(\mathrm{C}_{10} \mathrm{H}_{15}\right), 123.1188\left(\mathrm{C}_{9} \mathrm{H}_{15}\right), 121.1016\left(\mathrm{C}_{9} \mathrm{H}_{13}\right), 69.0701\left(\mathrm{C}_{5} \mathrm{H}_{9}\right)$, $55.0551\left(\mathrm{C}_{4} \mathrm{H}_{7}\right) ; \mathrm{Rt}_{\mathrm{R}}(\mathrm{II}) 0.22$ (HPLC II), 0.74 (GLC). On alkaline hydrolysis, 6 yielded a free alcohol (5).

References and Notes

(1) Gunston, F. D., Harwood, J. L., Padley, F. B., Eds. The Lipid Handbook, 2nd ed.; Chapman and Hall: London, 1994; p 103.
(2) Okuda, T., Ed. Encyclopedia of Natural Medicine; Hirokawa Publishing Company: Tokyo, 1986; p 171.
(3) (a) Itoh, T.; Tamura, T.; Matsumoto, T. Lipids 1974, 9, 173-184. (b) Itoh, T.; Tamura, T.; Matsumoto, T. Lipids 1976, 11, 434-441. (c) Itoh, T.; Uetsuki, T.; Tamura, T.; Matsumoto, T. Lipids 1980, 15, 407-411.
(4) Goad, L. J .; Akihisa, T. Analysis of Sterols; Blackie Academic and Professional: London, 1997.
(5) Akihisa, T.; Yasukawa, K.; Kimura, Y.; Takase, S.; Yamanouchi, S.; Tamura, T. Chem. Pharm. Bull. 1997, 45, 2016-2023.
(6) Akihisa, T.; Kimura, Y.; Koike, K.; Shibata, T.; Y oshida, Z.; Nikaido, T.; Tamura, T. J . Nat. Prod. 1998, 61, 409-412.
(7) Barrerro, A. F.; Manzaneda R., E. A.; Manzaneda R., R. A.; Arseniyadis, S.; Guittet, E. Tetrahedron 1990, 46, 8161-8168.
(8) Drawings correspond to energy-minimized conformations with respect to the known ring systems of triterpene al cohols. Calculations were performed using MacroM odel Ver. 6.0 with extended MM3 parameters. The conformation with minimum steric energy was obtained through a Metropol is M onte Carlo procedure. ${ }^{9}$
(9) M ohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J . Comput. Chem. 1990, 11, 440-467.
(10) We adopted the nomenclature of pentacydic triterpenes for camelliols $\mathrm{A}(\mathbf{1}), \mathrm{B}(3)$, and $\mathrm{C}(5)$ because of their possible biogenetic correlation with fully cyclized triterpene alcohols.
(11) Barrero, A. F.; Alvarez-Manzaneda R., E.J .; Alvarez-Manzaneda R., R. Tetrahedron Lett. 1989, 30, 3351-3352.
(12) Horan, H.; McCormick, J. P.; Arigoni, D. J. Chem. Soc., Chem. Commun. 1973, 73-74.

NP980336A

[^0]: * To whom correspondence should be addressed. Tel.: 81-3-3259-0816. Fax: 81-3-3293-7572. E-mail: akihisa@chem.cst.nihon-u.ac.jp.
 ${ }^{\dagger}$ College of Science and Technology, Nihon University.
 \ddagger Meikai University School of Dentistry.
 ${ }^{\S}$ College of Pharmacy, Nihon University.
 ${ }^{1}$ Toho University.
 "Cauldron Process Chemistry.

[^1]: ${ }^{\text {a }}$ J Values (Hz) are bracketed. J values not included were not determined. ${ }^{\text {b }}$ Determined at 500 MHz . ${ }^{\mathrm{c}}$ Assignments in each column are interchangeable.

